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Abstract. For many important real world problems, after the application of
appropriate discretization techniques we can get symmetric and relatively dense
linear systems of equations (e.g. those obtained by collocation or projection-like
discretization of first kind integral equations). Usually, these systems are rank-
defficient and (very) ill-conditioned, thus classical direct or iterative solvers can
not be efficiently applied. Moreover, because they are relatively dense, classical
preconditioning techniques (as e.g. Incomplete Decomposition) become useless.
In the present paper we describe an iterative solver for relatively dense symmet-
ric linear systems, in classical or least-squares formulation. The method is based
on a modified version of Kovarik’s approximate orthogonalization algorithm. We
prove that the sequence of approximations so generated converges to the minimal
norm solution of the system. Numerical experiments are described for a colloca-
tion discretization of two first kind integral equations, one of them appearing in
inverse problems related to determination of charge distribution that generates a
prescribed electric field.
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1 The symmetric Kovarik algorithm

Let A be an n×n symmetric matrix and (A)i, A
t, A+ its i-th row, transpose

and Moore-Penrose pseudoinverse (see [1]), respectively. By gk2(A) we shall
denote its generalized spectral condition number defined as the square root
of the ratio between the biggest and smallest singular values; 〈·, ·〉, ‖ · ‖ will
be the Euclidean scalar product and norm on some space IRq. We shall also
use the notations σ(B), ρ(B), ‖ B ‖, R(B), N(B) for the spectrum, spectral
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radius, spectral norm, range and null space of a square matrix B, respectively.
All the vectors appearing in the paper will be considered as column vectors.
Let (ak)k≥0 be the sequence of reals defined aj = 1

22j
(2j)!
(j!)2

, j ≥ 0 and (qk)k≥0

a given sequence of positive integers. In [8] we considered the following
”symmetric” version of Kovarik’s algorithm from [4] (Algorithm A, page
386), extended by the author in [9].
Algorithm KOAS. Let A0 = A; for k = 0, 1, . . . , do

Hk = I − Ak, Ak+1 = fk(Hk)Ak, (1)

where fk : IR −→ IR is the function defined by

fk(x) = 1 + a1x + . . . + aqk
xqk , k ≥ 0. (2)

Theorem 1 ([8]) Let us suppose that the symmetric matrix A satisfies

‖ A ‖= ρ(A) < 1, 〈Ax, x〉 ≥ 0, ∀x ∈ IRn. (3)

Then, the sequence (Ak)k≥0 generated with the algorithm KOAS converges
and

lim
k→∞

Ak = A+A. (4)

Remark 1 For the generalized spectral conditions numbers of the matrices
Ak, k ≥ 0 the following holds

lim
k→∞

gk2(A) = gk2(A
+A) = 1. (5)

Thus, the KOAS algorithm can be used as an ”iterative preconditioner” for
the matrix A (see e.g. [3]).

The linear convergence of the algorithm KOAS is described in the following
result (proved in [10]).

Theorem 2 The algorithm KOAS converges linearly, i.e.

‖ Ak − A+A ‖ ≤
(

1− λmin

2

)k

‖ A− A+A ‖, ∀k ≥ 0, (6)

where λmin is the smallest positive eigenvalue of A.
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Remark 2 Another interesting property of the KOAS algorithm is related
to the relation A+A = PR(At) (see e.g. [1]), where by PS we denoted the
orthogonal projection onto the vector subspace S ⊂ IRn. But, because the
matrix A is symmetric we get A+A = PR(A) and I − A+A = PN(A). Thus,
for a given vector b ∈ IRn, from (4) it results that

lim
k→∞

Akb = PR(A)(b), lim
k→∞

(I − Ak)b = PN(A)(b). (7)

2 Application to least-squares problems

Let b ∈ IRn be a given vector. We shall consider the linear least-squares
formulation: find x∗ ∈ IRn such that

‖ Ax∗ − b ‖= min{‖ Ax− b ‖, x ∈ IRn}. (8)

In what follows we shall construct an algorithm for the approximation of the
minimal norm solution, xLS of (8). The algorithm uses the above KOAS
together with a recursive modification of the right hand side.
Algorithm KOAS-rhs. Let A0 = A, b0 = b; for k = 0, 1, 2, . . . do

Hk = I − Ak, bk+1 = fk(Hk)b
k, Ak+1 = fk(Hk)Ak. (9)

The following result proves the convergence of KOAS-rhs algorithm.

Theorem 3 In the hypothesis of Theorem 1 the sequence (Akb
k)k≥0 gener-

ated by (9) converges and

lim
k→∞

Akb
k = A+b = xLS (10)

Proof. Because A is symmetric we have N(At) = N(A), thus

b = PR(A)(b) + PN(A)(b), (11)

with
PR(A)(b) = Ax (12)

for some x ∈ IRn. Let r = rank(A) ≤ n and Q an n × n orthogonal matrix
such that

A = Qdiag(λ
(0)
1 , . . . , λ(0)

r , 0, . . . , 0)Qt, (13)
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where λ
(0)
i are the nonzero eigenvalues of A. Then, as in [6] we obtain

Ak = Qdiag(λ
(k)
1 , . . . , λ(k)

r , 0, . . . , 0)Qt.

Combining this with (1)-(2) we see that

fk(Hk) = Qdiag(fk(1− λ
(k)
1 ), . . . , fk(1− λ(k)

r ), fk(1), . . . , fk(1))Q
t. (14)

On the other hand we know that

A+ = Qdiag(
1

λ
(0)
1

, . . . ,
1

λ
(0)
r

, 0, . . . , 0)Qt, (15)

and thus we obtain

PN(A) = I − PR(A) = I − A+A = Qdiag(0, . . . , 0, 1, . . . , 1)Qt. (16)

From (16) and (14) we get

fk(Hk)PN(A) = Qdiag(0, . . . , 0, fk(1), . . . , fk(1))Q
t = fk(1)PN(A). (17)

Now, from (9), (11), (12) and (17) we get

b1 = f0(H0)b
0 = f0(H0)b = f0(H0)PR(A)(b)+

f0(H0)PN(A)(b) = f0(H0)Ax + f0(1)PN(A)(b) = A1x + f0(1)PN(A).

Using a recursive argument and also (14), (16) and (12), we obtain

bk = Akx + f0(1) · · · fk(1)PN(A)(b), ∀k ≥ 0. (18)

By mathematical induction we can prove without difficulty that ∀k ≥ 0,
〈Akx, x〉 ≥ 0,∀x ∈ IRn. Moreover, in [8] we have showed that, if λ

(0)
i ∈ (0, 1)

then fk(1−λ
(k)
i )λ

(k)
i ∈ (0, 1),∀k ≥ 0. From these consideration it results that

the matrices Hk are symmetric and positive definite, so will be also fk(Hk),
∀k ≥ 0. Using the invertibility of the matrices fk(Hk) and (9) we can easily
prove

N(Ak) = N(A), ∀k ≥ 0,

which together with (18) gives us

Akb
k = AkAkx = A2

kx, ∀k ≥ 0. (19)
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From (12), (4), (19) and the properties of the Moore-Penrose pseudoinverse
A+ (see e.g. [1]) we then have

lim
k→∞

Akb
k = lim

k→∞
AkAkx = (A+A)(A+A)x =

(A+AA+)(Ax) = A+Ax = A+PR(A)(b) = xLS

and the proof is complete.

Corollary 1 In the hypothesis of the above theorem we have

lim
k→∞

‖ bk ‖= +∞. (20)

Proof. Because qk ≥ 1, ak > 0,∀k ≥ 0 we obtain that

fk(1) = a0 + a1 + . . . + aqk
≥ a0 + a1 = 1 +

1

2
=

3

2
. (21)

From (21), (18) and the orthogonality of the subspaces N(A) and R(A) we
then obtain

‖ bk ‖2=‖ Akx ‖2 + (f0(1) . . . fk(1))
2 ‖ PN(A)(b) ‖2≥ (

3

2
)k ‖ PN(A)(b) ‖2→∞,

because in the inconsistent case PN(A)(b) 6= 0. This completes the proof.

3 Numerical experiments

Test problem P1 (see [7])
For a given function y ∈ L2([0, 1]), find x∗ ∈ L2([0, 1]) such that∫ 1

0
k(s, t)x(t)dt = y(s), s ∈ [0, 1], (22)

with

k(s, t) =
1

1 + |s− 0.5|+ t
, y(s) =


ln2.5−s

1.5−s
, s ∈ [0, 0.5)

ln1.5+s
0.5+s

, s ∈ [0.5, 1]
(23)

Remark 3 The right hand side y was defined as in (23) such that the equa-
tion (22) has the solution x(t) = 1,∀t ∈ [0, 1].
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We discretized (22)-(23) by the collocation algorithm from [5], with the col-
location points

si = (i− 1)
1

n− 1
, i = 1, 2, . . . , n. (24)

Thus, we obtained the symmetric system

Ax = b, (25)

with the n× n matrix A and b ∈ IRn given by

Aij =
∫ 1

0
k(si, t)k(sj, t)dt =


1

αi(1+αi)
, if αi = αj,

1
αi−αj

ln (1+αj)αi

(1+αi)αj
, if αi 6= αj,

bi = y(si),

(26)
where

αi = 1 + |si −
1

2
|, i = 1, . . . , n. (27)

For n ≥ 3 we observe that the matrix A from (26) is positive semi-definite
with

rank(A) =


n+1

2
, if n is odd

n
2
, if n is even.

(28)

We also observe that, because the problem (22)- (23) is consistent (see Re-
mark 3) so will be the system (25). Then, in order to get an inconsistent
problem (8) we considered a perturbation of the right hand side b of the form

b := b + δb, (29)

with δb ∈ IRn a randomly generated vector such that ‖ δb ‖= 5% ‖ b ‖.
Test problem P2 - Determination of charge distribution gener-

ating a given electric field (inverse problem,(see [2], (1.13) - particular
case)
For a given function y ∈ L2([0, 1]), find x∗ ∈ L2([0, 1]) such that∫ 1

0
k(s, t)x(t)dt = y(s), s ∈ [0, 1], (30)

with

k(s, t) =
1√

(1 + (s− t)2)3
, y(s) = s. (31)
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We discretized (30)-(31) as P1 before and we obtained the symmetric and
positive semidefinite definite system

Âx = b, (32)

with the n× n matrix Â and b ∈ IRn given by

Âij =
∫ 1

0
k(si, t)k(sj, t)dt, bi = y(si). (33)

But, because the exact values (Â)ij from (33) can not be analitically ob-
tained, we approximated them by the rectangles (”midpoint”) quadrature
formula, with 16 equally spaced points in [0, 1] and we obtained an n × n
matrix A. Moreover, for n = 16, 32, 64, 128, 256 the matrix A is rank
deficient and the system (25) inconsistent (i.e. we must reformulate it also
as in (8)). Both the above symmetric least-squares formulations are (very)
ill-conditioned (gk2(A) ≥ 108) and sensitive to round-off errors. Moreover,
Kovarik-like algorithms for such kind of problems must be applied with “spe-
cial care”, with respect to (theoretically) zero eigenvalues that can grow and
damage the results if the number of iteartions used exceeds a certain value
(see for details in this sense the analysis made in [6]). For this, we considered
the following numerical “strategy” w.r.t. their numerical solution:
a) for problem P1 - we considered the absolute (abser) and relative (reler)
errors (with respect to the exact minimal norm solution of (8) xLS), defined
by

abser =‖ Akb
k − xLS ‖, reler =

abser

‖ Akbk ‖
. (34)

Then, for n = 8 we determined the number of iterations for which

reler ≤ 0.5, (35)

we fixed this number and ran the computer code for other (bigger, more
realistic) values of n. In each case we computed abser, reler, and stop, given
by the normal equation residual

stop =‖ At(AAkb
k − b) ‖ .

The results are presented in Table 1 below for three different choices of the
integers qk.
b) for problem P2 - the same as for P1, but the number of iterations for (35)
was determined using the particular value n = 32. The results are described
in Table 2.
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Remark 4 We have also to observe that for all dimensions n and for both
problems the value ‖ xLS ‖ was very big (of order 107−109), thus the absolute
error abser appears so big. On the other hand, we verified the accuracy of the
approximations in each case by plotting the corresponding solution; we then
observed that, up to a unit difference concerning the order of magnitude, the
solutions have the same “shape” (variation) as the exact one xLS which for
such big numerical vales is an enough good comparison criterion.

Note. All the computations were made with the Numerical Linear Algebra
software package OCTAVE, freely available under the terms of the GNU
General Public License, see www.octave.org.

Table 1. Number of iterations: 70/46/37
n qk = 1,∀k qk = 2,∀k qk = 3,∀k

stop abser reler stop abser reler stop abser reler

8 10−6 108 0.36 10−7 108 0.28 10−6 108 0.38
16 10−5 106 0.11 10−5 107 0.1 10−6 107 0.15
32 10−5 106 0.09 10−5 107 0.16 10−7 107 0.38
64 10−5 107 0.07 10−5 107 0.2 10−5 107 0.37
128 10−5 106 0.09 10−4 107 0.11 10−4 107 0.59
256 10−4 106 0.27 10−4 107 0.35 10−4 107 0.37

Table 1: Results for the problem P1

Table 2. Number of iterations: 73/47/39
n qk = 1,∀k qk = 2,∀k qk = 3,∀k

stop abser reler stop abser reler stop abser reler

32 10−6 107 0.27 10−6 107 0.47 10−6 107 0.24
64 10−6 107 0.31 10−6 107 0.52 10−6 107 0.26
128 10−5 107 0.34 10−5 107 0.56 10−6 107 0.27
256 10−6 107 0.36 10−6 107 0.60 10−6 107 0.3

Table 2: Results for the problem P2
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