GENERIC INITIAL IDEALS *

Let K be a (commutative) infinite field, $r \geq 1$, $R = K[X_1, X_2, \ldots, X_r]$ and “$<$” be an order relation on the set of all monomials of R. We assume that $X_1 > X_2 > \ldots > X_r$, “$<$” is multiplicative (i.e. $m > m'$ implies $mn > m'n$, for any monomials m, m', n) and “$<$” is degree-sensitive, that is $\text{deg}(m) > \text{deg}(m')$ implies $m > m'$, for any monomials m, m'. If I is a homogeneous ideal of R, we consider the initial ideal of I, that is the ideal of R generated by the initial monomial, $\text{in}(f)$, of all nonzero elements f of I. This is obviously a monomial ideal that we shall denote by $\text{in}(I)$.

The concept of Generic initial ideal (abbrev. GIN) was introduced by R. Hartshorne in his paper: *Connectness of Hilbert schemes*, Publ. IHES 29(1966), 5-48. The power series analogue of GIN was introduced by H. Grauert in his paper: *Über die Deformation isolierter Singularitäten analytischer Mengen*, Invent. Math. 15(1972), 171-198.

$\text{GL}_r(K)$ acts as a group of automorphisms of the graded ring R, by

$$g(X_j) = \sum g_{ij} X_j, \quad g(X_1^{a_1} \ldots X_r^{a_r}) = g(X_1)^{a_1} \ldots g(X_r)^{a_r}, \quad \text{where} \quad g = (g_{ij}).$$

In $\text{GL}_r(K)$ we distinguish the subgroup B consisting of all nonsingular upper triangular matrices, also called the Borel subgroup. We notice that the set of all diagonal matrices and all upper elementary matrices generates B.

Let R_d be the K-vector space consisting of all forms of degree d. If V is a t-dimensional subspace of R_d and f_1, \ldots, f_t is a K-basis of V, then the t-exterior power $\wedge V$ of V equals $K f_1 \wedge f_2 \wedge \ldots \wedge f_t$. If f_1, f_2, \ldots, f_t and g_1, g_2, \ldots, g_t are linearly independent systems in R_d, then they generate the same K-subspace if and only if $f_1 \wedge f_2 \wedge \ldots \wedge f_t = \lambda g_1 \wedge g_2 \wedge \ldots \wedge g_t$ for some nonzero λ in K. If m_1, m_2, \ldots, m_t are distinct monomials of R_d, then $m_1 \wedge m_2 \wedge \ldots \wedge m_t$ will be called monomial of $\wedge^t R_d$. Such a monomial $m_1 \wedge m_2 \wedge \ldots \wedge m_t$ will be called normal if $m_1 > m_2 > \ldots m_t$. On the set of all normal monomials of $\wedge^t R_d$ we introduce the order relation given by $m_1 \wedge m_2 \wedge \ldots \wedge m_t > m_1' \wedge m_2' \wedge \ldots \wedge m_t'$ if and only if $(m_1, m_2, \ldots, m_t) > (m_1', m_2', \ldots, m_t')$ in the lexicographic order. Then for each f in $\wedge^t R_d$, we can consider its initial monomial $\text{in}(f)$. For instance, if f_1, f_2, \ldots, f_t is basis of $\wedge^t R_d$.

*This lecture was held by Tiberiu Dumitrescu:
Faculty of Mathematics, University of Bucharest,
Bucharest 1, RO-70190, Str. Academiei 14, Romania
e-mail: tiberiu@al.math.unibuc.ro
V with \(\text{in}(f_1) > \text{in}(f_2) > \ldots \text{in}(f_t) \) (note that any \(V \) has such a basis), then \(\text{in}(f_1 \land f_2 \land \ldots \land f_t) = \text{in}(f_1) \land \text{in}(f_2) \land \ldots \land \text{in}(f_t) \).

The following remark is now obvious.

Remark 1. Let \(I \) be a homogeneous ideal of \(R \) and \(f_1, f_2, \ldots, f_t \) a \(K \)-basis of \(I_d \), the component of degree \(d \) of \(I \). Then the monomial basis of \(\text{in}(I_d) \) is given by \(\text{in}(f_1 \land f_2 \land \ldots \land f_t) \). In particular, if \(g \in GL_r(K) \), the monomial basis of \(\text{in}(gI_d) \) is given by \(\text{in}(g(f_1) \land g(f_2) \land \ldots \land g(f_t)) \).

We have the following theorem of existence of GIN.

Theorem 2. Let \(K \) be an infinite field and \(I \) a nonzero homogeneous ideal of \(R \). There exists a nonempty open Zariski set \(U \) of \(GL_r(K) \), such that \(\text{in}(gI) = \text{in}(g'I) \) for each \(g, g' \in U \) (this constant ideal is called the generic initial ideal of \(I \) and is denoted by \(\text{Gin}(I) \)). Moreover, if \(J = \text{Gin}(I) \) and \(I_d \) is \(t \)-dimensional over \(K \), then \(\text{Gin}(I) \) is generated by \(\max \{ \text{in}(f); \ f \in \text{Gin}(I) \} \).

Proof. Let \(f_1, f_2, \ldots, f_t \) be a basis of \(I_d \) and \(f = f_1 \land f_2 \land \ldots \land f_t \). Let \(h = (h_{ij}) \) be an \(r \times r \) generic matrix and \(h(f) = h(f_1) \land h(f_2) \land \ldots \land h(f_t) \). Let \(\text{in}(h(f)) = m_1 \land m_2 \land \ldots \land m_t \) and \(p(h) \) its coefficient from \(K[h_{11}, \ldots, h_{rr}] \). By our previous remark, \(\text{in}(gI_d) \) is \(K \)-generated by \(m_1, \ldots, m_t \) if and only if \(p(g) \neq 0 \). Denote by \(U_d \) the set of all \(g \in GL_r(K) \) with this property. Thus, for each \(d \geq 1 \) we have defined the nonempty open subset \(U_d \) of \(GL_r(K) \) and the \(K \)-vector subspace \(J_d = Km_1 + \ldots + Km_t \). Let \(J = \sum_{d \geq 1} J_d \). We claim that \(J \) is an ideal of \(R \). Indeed, since \(R_e = R_{e+1}^* \), it suffices to see that \(R_1 J_d \subseteq J_{d+1} \). Since \(U_d \) is dense in \(GL_r(K) \), there exists \(g_0 \in U_d \cap U_{d+1} \). Then

\[
R_1 J_d = R_1 \text{in}(g_0 I_d) \subseteq \text{in}(g_0 I)_{d+1} = J_{d+1}.
\]

Also, \(J_d \) and \(\text{in}(gI_d) \) have the same dimension over \(K \), for each \(g \in GL_r(K) \). Indeed,

\[
dim_K(J_d) = \dim_K(\text{in}(g_0 I_d)) = \dim_K((g_0 I)_{d+1}) = \dim_K(I_{d+1}) \text{ and } \dim_K(I_d) = \dim_K(in(gI_d)).
\]

\(J \) has a finite system of generators \(v_1, v_2, \ldots, v_q \) consisting of homogeneous polynomials and let \(e \) be the maximum of the degrees of these polynomials. If \(g \in U = U_1 \cap \ldots \cap U_e \), we claim that \(J_d' \subseteq \text{in}(gI_d') \) for each \(d' \). This fact is clear for \(d' \leq e \) and then follows by induction, so we may assume that \(d' = e + 1 \). In this case, \(J_{e+1} = R_1 J_e \subseteq R_1 \text{in}(gI) \subseteq \text{in}(gI)_{e+1} \). By equidimensionality, \(J_d = \text{in}(gI_d) \), for each \(d \geq 1 \) and \(g \in U \). In particular, \(U \) is the desired Zariski open set. \(\Box \)
The following result is due to Galligo (see Lecture Notes in Math. 409, Springer Verlag 1974) and Bayer-Stillmann (Duke Math. J. 55(1987), 321-328).

Theorem 3. $\text{Gin}(I)$ is a Borel-fixed ideal, that is $g\text{Gin}(I) = \text{Gin}(I)$ for each $g \in B$.

Proof. Replacing I by some gI, we may assume $\text{Gin}(I) = \text{in}(I)$. Let $1 \leq i < j \leq r$ and let $\gamma \in \text{GL}_r(K)$ be the matrix obtained from the identity matrix adding the ith column to the jth one. Since all the matrices of this kind generate B, it suffices to see that $\gamma \text{Gin}(I) \subseteq \text{Gin}(I)$. Let f_1, \ldots, f_t be a K-basis of I_d with $\text{in}(f_1) > \text{in}(f_2) > \ldots \text{in}(f_t)$ and denote $\text{in}(f_i)$ by m_i. Suppose that $\gamma(\text{in}(I_d)) \not\subseteq \text{in}(I_d)$. This means that $\gamma(\text{in}(f)) \neq \text{in}(f)$, where $f = f_1 \wedge f_2 \wedge \ldots \wedge f_t$. Also

$$
\gamma(m_1 \wedge m_2 \wedge \ldots \wedge m_t) = \gamma(m_1) \wedge \gamma(m_2) \wedge \ldots \wedge \gamma(m_t).
$$

Due to the action of γ, in the expression of $\gamma(\text{in}(f))$ appears a monomial $n > m$. Let us associate to each monomial $\rho_1 \wedge \rho_2 \wedge \ldots \wedge \rho_t \in \Lambda^t \text{R}_d$, its weight $\rho_1 \rho_2 \ldots \rho_t$. When we express f as a sum of monomials, $m(f)$ is the only monomial of maximal weight, say w_0. Then f can be written as

$$
f = f_{w_0} + \sum_w f_w,
$$

where $f_{w_0} = \text{in}(f)$ and f_w is the some of all monomials in f of weight w. So, if δ is the diagonal matrix given by $\delta_1, \delta_2, \ldots, \delta_r$, it follows that

$$
\delta(f) = w_0(\delta_1, \ldots, \delta_r)\text{in}(f) + \sum_{w \geq w_0} w(\delta_1, \ldots, \delta_r)f_w,
$$

with $w_0(\delta_1, \ldots, \delta_r)$ and $w(\delta_1, \ldots, \delta_r)$ in K. So

$$
(\gamma \delta)(f) = w_0(\delta_1, \ldots, \delta_r)\gamma(\text{in}(f)) + \sum_{w \geq w_0} w(\delta_1, \ldots, \delta_r)\gamma(f_w).
$$

Then n appears in the expression of $\gamma \delta(f)$ with the coefficient

$$
aw_0(\delta_1, \ldots, \delta_r) + \sum_{w \in W} a_w w(\delta_1, \ldots, \delta_r),
$$

where W is the set of those w such that n appears in $\gamma(f_w)$. But the polynomial

$$
P(X_1, X_2, \ldots, X_r) = aw_0(X_1, \ldots, X_r) + \sum_{w \in W} a_w w(X_1, \ldots, X_r)
$$

is nonzero and K is infinite, so $P(\delta_1, \ldots, \delta_r) \neq 0$ for some $\delta_1, \ldots, \delta_r \in K$. This way, we contradict the last assertion of the preceding theorem. \qed
Corollary 4. If K has characteristic zero, then $\text{Gin}(I)$ is a strongly stable ideal, that is, whenever a monomial m belongs to $\text{Gin}(I)$, X_j divides m and $i < j$, then $X_i(m/X_j)$ is also in $\text{Gin}(I)$.

Proof. Let $J = \text{Gin}(I)$, m a monomial of J, X_j divide m and $i < j$. Let $m = X_1^{a_1} \ldots X_i^{a_i} \ldots X_j^{a_j} \ldots X_r^{a_r}$ and b the element of B obtained by making the (i,j) entry of the identity matrix equal to 1. Since $\text{Gin}(I)$ is Borel-fixed, $bm \in J$. But

$$bm = X_1^{a_1} \ldots X_i^{a_i} \ldots (X_j + X_i)^{a_j} \ldots X_r^{a_r} = m + a_j X_i(m/X_j) + \ldots,$$

so $a_j X_i(m/X_j) \in J$ because J is monomial, thus $X_i(m/X_j) \in J$ because $a_j \neq 0$.

\qed