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Abstract. In this paper we present different approaches to model the loss distributions of two data 
sets from automobile liability insurance, with accent on the Estimation Maximization (EM) 
algorithm. A comparison study between those approaches is conducted. 
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1. Introduction 
As specified in Klugman et al. (1998), „in the most general sense, all of actuarial science is 

about loss distributions because that is precisely what an insurance agreement is all about”. The 
policy holder is paid a random amount (the loss) at a random future time. Hence, a loss 
distribution is considered to be the probability distribution of either the loss, or the amount paid 
from a loss event. Evaluating the loss distribution for an homogeneous portfolio is of great 
importance for the insurance company, because this distribution is involved in developing 
probability distributions for the aggregate loss, and therefore in evaluating ruin probabilities, 
reserves, benefits etc., or in establishing the influence of different deductibles. 

In this paper we will consider different approaches to model the loss distributions of two data 
sets from automobile liability insurance. The data were kindly provided by two romanian 
insurance companies and consists of all the liability claims settled during year 2004 for an entire 
portfolio.  

We will first present the Estimation Maximization (EM) algorithm used to evaluate 
maximum likelihood estimators for mixtures of normal densities (section 2). Then we will apply 
this algorithm for our data sets, conducting also a comparative study with other methods. In 
section 3 we study the first data set, while section 4 is dedicated to the second data set. 

 
2. The EM algorithm 
The EM algorithm is a popular tool for simplifying difficult maximum likelihood problems, 

see e.g. Dempster et al. (1977). This algorithm is designed for mixtures of normal distributions, 
and therefore it can be used when we notice that the distribution graph (e.g. histogram) presents a 
multi-modality. Then the number of modes should give an idea on the number of mixed 
distributions. In the following we will describe this algorithm for two and three mixtures of 
normal distributions. 

 
2.1 EM algorithm for a two components mixture 
Let us consider a sample (  from the random variable D. Assuming that the 

corresponding histogram reflects a bi-modality, then we can model D as a mixture of two normal 
random variables,  
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and , with . This representation is explicit: generate an  with 
probability r and then, depending on the outcome, deliver either  or . 

{ }1,0∈I ( ) rIP == 1 { }1,0∈I

1C 2C
Now let 1, 2( ),i x iφ = , denote the normal density with parameters 2,i iμ σ . Then the 

density of D is 
1 2( ) ( ) (1 ) ( )Df x r x r xφ φ= + − . 

In order to fit this model to the sample ( )Nyy ,...,1 , we must first estimate the parameters 
2

1 21, , , ,r 2
2μ σ μ σ . From Dempster et al. (1977), we have the following EM algorithm for a two-

components Gaussian mixture: 
 
Algorithm 1 

 
1. Take initial guesses for the parameters, e.g. 21 ˆ,ˆ,5,0ˆ μμ=r  taken at random from the 
observed data, and 21 ˆˆ σσ =  equal to the overall sample variance. 
2. Expectation step: compute the „responsabilities”, 
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3. Maximization step: compute the weighted means and variances, 
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and the mixing probability 
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4. Iterate steps 2 and 3 until convergence. 
 

 
2.2 EM algorithm for a three components mixture 
Based on the algorithm above, a generalization for three components mixtures is easy to 

obtain. Let us consider again a sample ( )Nyy ,...,1  from the random variable D, but we will now 
assume that the corresponding histogram presents a tri-modality, hence we try to model D as a 
mixture of three normal random variables, 

( ) 3212211 1 CIICICID −−++= , 
where 
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and the bivariate distribution of the random variable ( )21 , II  is given by 
( ) ( ) ( ) ,2,1,10,10,0,1,0,0,1 2121221121 =<<−−========= irrrIIPrIIPrIIP i  

and . 121 <+ rr
We will now denote by 1, 3( ),i x iφ = , the normal density with parameters 2,i iμ σ , 

corresponding to the random variables . Then the density of D writes iC
1 2 1 21 2 3( ) ( ) ( ) (1 ) ( )D rf x r x x xr rφ φ φ−= + + − . 

We must estimate the parameters 2 2 ,1 2 31 2, , , , ,r 2
3μ σ μ σ μ σ . Based on Algorithm 1, the EM 

algorithm for a three-components Gaussian mixture becomes: 
 
Algorithm 2 

 
1. Take initial guesses for the parameters,  (see suggestions in 
Algorithm 1). 
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2. Expectation step: compute the „responsabilities”, 
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3. Maximization step: compute the weighted means and variances, 
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4. Iterate steps 2 and 3 until convergence. 
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3. Modelling a loss distribution for the first data set 
Unfortunately, this data set consists of only 69 settled claims during 2004. This is not enough 

for a thorough statistical analisys, but one can get a general ideea. The main empirical 
characteristics of this data set are 

Expected value=17.837.681 
Standard deviation= 18.242.961 
Skewness=2,09 
Standard Error Skewness=0,28 
Kurtosis= 5,51 
Standard Error Kurtosis= 0,57 
Maximum value=100.000.000 
Minimum value=1.100.000 

In the following, we will consider three different approaches to fit a distribution to this data 
set. 

 
3.1 A first approach 
Using Statistica software, we tried to fit several continuous distributions that are usually 

considered when modeling claims. For details on these distributions see e.g. Kotz et al. (2000) or 
Kaas et al. (2001). As a fit measure we used the p-value (or p-level) given by Statistica, with the 
following meaning: it represents the probability of error that is involved in accepting our 
observed result as valid. In many areas of research, the upper-limit p-value accepted is 0,05, that 
is a p-value  is considered at trust limit. A significant p-value should be , 
while  or  are highly significant. 

0,05p ≤ 0,01p ≤
0,005p ≤ 0,001p ≤

Back to our data, we first tried to fit a Log-Normal distribution, and the result is given in 
Figure 1. 

 
Figure 1.  Data set I

Log-normal distribution in red line
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With a p-value p=0,28 , it is clear that the Log-Normal distribution must be rejected.  

Secondly, we tried to fit an Exponential distribution, see Figure 2. Again, the p-value p=0,15 
is too high, so we reject this distribution also. 
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Figure 2.  Data set I
Exponential distribution in red line
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Finally, we tried to fit a Gamma distribution, as in Figure 3. This time, the p-value p=0,044 is 

at the trust limit, so this distribution can be considere as a valid candidate for this data set if we 
cannot find a better one. 

 
Figure 3.  Data set I

Gamma distribution in red line
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3.2 A second approach 
Looking closer at the data histogram, one can notice that the claims seem to be of two kinds: 

lower costs and higher costs. This is why we decided to try to fit a mixture of two normal 
distributions, one normal distribution for the lower costs considered independent, identically 
distributed (i.i.d.) like the random variable , and a second normal distribution for the higher 1C
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costs, also i.i.d. like . Then denoting by D the claim random variable corresponding to all the 
data, it will be of the form 

2C

1 2(1 )D IC I C= + − , 

where I is a Bernoulli random variable, i.e. . We recognize here the model from 

section 2.1, with the interpretation: if 

0 1
:

1
I

r r
⎛ ⎞
⎜
⎝ ⎠− ⎟

1=I , then the claim D equals , and if , then the 
claim D will be equal to . Therefore, using the notation in section 2.1, we can apply 
Algorithm 1 to try to fit to the data a density of the form 

1C 0=I
2C

1 2( ) ( ) (1 ) ( )Df x r x r xφ φ= + − . 
The fitted density obtained using MATLAB can be seen in Figure 4, while the parameters are 
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Figure 4. Fitted density using EM Algorithm 1 

 
 

 
3.3 A third approach 
Using the same notation as in section 3.2, we assume again that the distribution of D is a 

mixture of two distributions, just that this time those two distributions will not be considered of 
normal type. Looking at the histogram, a realistic assumption would be that the lower costs are 
exponentially distributed, while for the higher costs we can choose a Pareto distribution, since 
Pareto is classically used for extreme value costs. The problem is to establish the proportion r of 
the lower costs from the total costs. Empirically, we choose the first 59 values as the lower costs 
and the last 10 values as the higher costs, so we will have r=59/69=0,855. 
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Hence, we have ~1C ( )θlExponentia  with ( ) 1
1

xF x eC
θ−= −  and a maximum likelihood 

estimated value for the parameter 88, 641 10VMθ −= ⋅ .  

Also, taking  ~ ( ,2C Pareto a )α  with 1 ,( )
2

0 ,

a x ax xC
x a

F
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− >
=

≤

, we choose 

, while the maximum likelihood estimation for the other parameter is 40.000.000a = 3, 5852α = .  
A better fitting of this Exponential-Pareto mixture could be obtained using an adapted EM 

algorithm with starting values for the parameters given by the ones above. This will be subject for 
further research. 

In conclusion, we expect that this Exponential-Pareto mixture is better that the Normal-
Normal one presented in section 3.2, and better that the Gamma distribution fitted in section 3.1.  
 

4. Modelling a loss distribution for the second data set 
This second data set consists of 1161 settled claims during 2004, which is better than for the 

first data set. The main empirical characteristics of this data set are 
Expected value=17.126.337,4 
Standard deviation=24.267.282,3  
Skewness=4,62 
Standard Error Skewness=0,07 
Kurtosis= 32,80 
Standard Error Kurtosis= 0,14 
Maximum value=310.000.000 
Minimum value=9.000 

In the following, we will consider two different approaches to fit a distribution. 
 
4.1 The first approach 
As before, using Statistica software, we tried to fit several continuous distributions and we 

noticed that the „best” fit is given by the Log-normal distribution (see Figure 5, red line), but 
since , we have to reject this distribution and try another model. 0,77880 0,05p = >
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4.2 The second approach 
Looking closer at the data histogram, we noticed that this time the claims seem to be of three 

kinds: lower costs, medium costs and higher costs. Hence, we try to fit a mixture of three normal 
distributions, one normal distribution for each kind of costs: lower costs of random variable , 
medium costs of random variable , and higher costs of random variable . Then denoting by 
D the claim random variable corresponding to all the data, it will be of the form 

1C

2C 3C

( ) 3212211 1 CIICICID −−++= , 
so that we recognize here the model from section 2.2, with the interpretation: if , then the 
claim D equals , if  then D equals , and if 

11 =I

1C 12 =I 2C 021 == II , then D will be equal to . 
Therefore, using the notation in section 2.2, we can apply Algorithm 2 to try to fit to the data a 
density of the form 

3C

1 2 1 21 2 3( ) ( ) ( ) (1 ) ( )D rf x r x x xr rφ φ φ−= + + − . 
The fitted density obtained using MATLAB can be seen in Figure 5 (green line), while the 
estimated parameters are: 
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 In conclusion, we expect that this Normal mixture is better that the Log-normal 
distribution presented in section 4.1, and we also want to improve it by considering more than 
three normal distributions in the mixture. This will be subject for further research also. 
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